Molecular tailoring approach for geometry optimization of large molecules: energy evaluation and parallelization strategies.
نویسندگان
چکیده
A linear-scaling scheme for estimating the electronic energy, gradients, and Hessian of a large molecule at ab initio level of theory based on fragment set cardinality is presented. With this proposition, a general, cardinality-guided molecular tailoring approach (CG-MTA) for ab initio geometry optimization of large molecules is implemented. The method employs energy gradients extracted from fragment wave functions, enabling computations otherwise impractical on PC hardware. Further, the method is readily amenable to large scale coarse-grain parallelization with minimal communication among nodes, resulting in a near-linear speedup. CG-MTA is applied for density-functional-theory-based geometry optimization of a variety of molecules including alpha-tocopherol, taxol, gamma-cyclodextrin, and two conformations of polyglycine. In the tests performed, energy and gradient estimates obtained from CG-MTA during optimization runs show an excellent agreement with those obtained from actual computation. Accuracy of the Hessian obtained employing CG-MTA provides good hope for the application of Hessian-based geometry optimization to large molecules.
منابع مشابه
WebMTA: A web-interface for ab initio geometry optimization of large molecules using molecular tailoring approach
A web-interface for geometry optimization of large molecules using a linear scaling method, i.e., cardinality guided molecular tailoring approach (CG-MTA), is presented. CG-MTA is a cut-and-stitch, fragmentation-based method developed in our laboratory, for linear scaling of conventional ab initio techniques. This interface provides limited access to CG-MTA-enabled GAMESS. It can be used to obt...
متن کاملParallelization of Rich Models for Steganalysis of Digital Images using a CUDA-based Approach
There are several different methods to make an efficient strategy for steganalysis of digital images. A very powerful method in this area is rich model consisting of a large number of diverse sub-models in both spatial and transform domain that should be utilized. However, the extraction of a various types of features from an image is so time consuming in some steps, especially for training pha...
متن کاملEncapsulation of Methane Molecules into C60 Fullerene Nanocage: DFT and DTFB-MD Simulations
Extensive urbanization has greatly raised the demand for cleaner coal- and petroleum-derived fuels. Mainly composed of methane, natural gas represents a promising alternative for this purpose, making its storage a significant topic. In the present research, deposition of methane molecules in C60 fullerene was investigated through a combined approach wherein density functional based tight bindin...
متن کاملAn Ab Initio SCF-MO Study of Conformational Properties of Cyclodeca-1,2,3-triene
Ab initio calculation at HF/6-31G* level of theory for geometry optimization and MP2/6-31G*//HF/6-31G* for a single point total energy calculation are reported for the important energyminimumconformations and transition-state geometries of of cyclodeca-1,2,3-triene (1). The mostfavorable conformation of 1 is a unsymmetrical twist-chair (1-TC) structure. Degenerateinterconversion of 1-TC with it...
متن کاملTheoretical insights of magnetizability and solvent effect on the electronic properties of CoB8- molecule
Equilibrium geometry, electronic structures, and vibrational modes of CoB8- were investigated in the PBEPBE/6-311+G(d,p) level of theory. The nucleus independent chemical shift (NICS) analysis and magnetizability values were used for studying of aromaticity in CoB8-. The effects of different solvents on the structure and frontier orbital energies were calculated using the polarizable continuum ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 125 10 شماره
صفحات -
تاریخ انتشار 2006